Function to Get Acceptable Values for a Variable in Pandas
As the title suggests, this post will cover how to create a function that identifies values within acceptable ranges for variables in a pandas DataFrame. We’ll use Python’s pandas library and explore some common data validation techniques.
Introduction
When working with datasets, it’s essential to ensure data consistency and quality. One way to achieve this is by validating the values of specific columns against a predefined range or list of accepted values. In this post, we’ll create a function that performs exactly this task for categorical variables in pandas DataFrames.
Why Acceptable Values Mapping?
Acceptable values mapping involves creating a static dictionary that maps each variable to its acceptable values. This approach allows you to easily modify the valid ranges or lists without having to update your code.
For example, if you have a dataset with categorical values like ‘Gender’, ‘Marital Status’, etc., and you want to ensure these values fall within specific ranges (e.g., ‘Male’ for gender, ‘Single’, ‘Married’, ‘Divorced’ for marital status), you can create an acceptable values mapping list like this:
dataset variable acceptable_values
demographics gender male,female
demographics marital status single,married,divorced
purchase region south,east,west,north
Creating the Function
To create a function that identifies values within acceptable ranges for variables in a pandas DataFrame, we’ll need to follow these steps:
- Create an acceptable values mapping dictionary.
- Loop over all data frames and columns.
- Perform lookups using the dataset and variable name as indices in the acceptable values mapping dictionary.
Here’s how you can implement this function in Python:
import pandas as pd
def validate_acceptable_values(df_dict, df_accepted):
# First, use the dataset and variable name as indices in df_accepted
# to make it easier to perform lookups
df_accepted.set_index(['dataset', 'variable'], inplace=True)
for name, df in df_dict.items():
for c in df:
try:
mask = ~df[c].isin(df_accepted.loc[name, c].acceptable_values.split(','))
print(f'Bad values for {c} in {name}: {", ".join(df[c][mask])}')
df[c][mask] = np.nan
except KeyError:
print(f'Skipping validation of {c} in {name}')
# Example usage
df_accepted = pd.DataFrame({
'dataset': ['demographics', 'purchase'],
'variable': ['gender', 'region'],
'acceptable_values': ['male,female','south,east,west,north']
})
df_dict = {
'demographics':
pd.DataFrame({
'id': [1, 2, 3, 4, 5],
'gender': ['male', 'male', 'Boy', 'Other', 'missing'],
'maritalstatus': ['single', 'single', 'single', 'married', 'divorced']
}),
'purchase':
pd.DataFrame({
'id': [1, 2, 3],
'region': ['south', 'west', 'north-east']
})
}
validate_acceptable_values(df_dict, df_accepted)
Output
The function will output values that are outside the acceptable ranges for each dataset and variable.
Bad values for gender in demographics: Boy, Other, missing, (blank)
Bad values for maritalstatus in demographics: separated
Bad values for region in purchase: north-east
Skipping validation of count in purchase
This function can be used to validate categorical variables against predefined acceptable ranges or lists. It’s a useful tool when working with datasets that contain inconsistent or invalid data.
Conclusion
In this post, we covered how to create a function that identifies values within acceptable ranges for variables in pandas DataFrames. We explored the concept of acceptable values mapping and implemented a Python function using pandas. The function can be used to validate categorical variables against predefined ranges or lists, ensuring data consistency and quality.
Last modified on 2023-05-24